Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
Sci Signal ; 17(832): eadl4738, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626009

RESUMO

Cocaine use disorder (CUD) is a chronic neuropsychiatric condition that results from enduring cellular and molecular adaptations. Among substance use disorders, CUD is notable for its rising prevalence and the lack of approved pharmacotherapies. The nucleus accumbens (NAc), a region that is integral to the brain's reward circuitry, plays a crucial role in the initiation and continuation of maladaptive behaviors that are intrinsic to CUD. Leveraging advancements in neuroproteomics, we undertook a proteomic analysis that spanned membrane, cytosolic, nuclear, and chromatin compartments of the NAc in a mouse model. The results unveiled immediate and sustained proteomic modifications after cocaine exposure and during prolonged withdrawal. We identified congruent protein regulatory patterns during initial cocaine exposure and reexposure after withdrawal, which contrasted with distinct patterns during withdrawal. Pronounced proteomic shifts within the membrane compartment indicated adaptive and long-lasting molecular responses prompted by cocaine withdrawal. In addition, we identified potential protein translocation events between soluble-nuclear and chromatin-bound compartments, thus providing insight into intracellular protein dynamics after cocaine exposure. Together, our findings illuminate the intricate proteomic landscape that is altered in the NAc by cocaine use and provide a dataset for future research toward potential therapeutics.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Camundongos , Animais , Núcleo Accumbens/metabolismo , Proteômica , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cromatina/metabolismo
2.
Transl Psychiatry ; 14(1): 120, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409093

RESUMO

It has been previously established that paternal development of a strong incentive motivation for cocaine can predispose offspring to develop high cocaine-seeking behavior, as opposed to sole exposure to the drug that results in drug resistance in offspring. However, the adaptive changes of the reward circuitry have not been fully elucidated. To infer the key nuclei and possible hub genes that determine susceptibility to addiction in offspring, rats were randomly assigned to three groups, cocaine self-administration (CSA), yoked administration (Yoke), and saline self-administration (SSA), and used to generate F1. We conducted a comprehensive transcriptomic analysis of the male F1 offspring across seven relevant brain regions, both under drug-naïve conditions and after cocaine self-administration. Pairwise differentially expressed gene analysis revealed that the orbitofrontal cortex (OFC) exhibited more pronounced transcriptomic changes in response to cocaine exposure, while the dorsal hippocampus (dHip), dorsal striatum (dStr), and ventral tegmental area (VTA) exhibited changes that were more closely associated with the paternal voluntary cocaine-seeking behavior. Consistently, these nuclei showed decreased dopamine levels, elevated neuronal activation, and elevated between-nuclei correlations, indicating dopamine-centered rewiring of the midbrain circuit in the CSA offspring. To determine if possible regulatory cascades exist that drive the expression changes, we constructed co-expression networks induced by paternal drug addiction and identified three key clusters, primarily driven by transcriptional factors such as MYT1L, POU3F4, and NEUROD6, leading to changes of genes regulating axonogenesis, synapse organization, and membrane potential, respectively. Collectively, our data highlight vulnerable neurocircuitry and novel regulatory candidates with therapeutic potential for disrupting the transgenerational inheritance of vulnerability to cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Masculino , Animais , Dopamina , Cocaína/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Recompensa , Perfilação da Expressão Gênica , Autoadministração
3.
Transl Psychiatry ; 14(1): 107, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388464

RESUMO

Epidemiological investigations indicate that parental drug abuse experiences significantly influenced the addiction vulnerability of offspring. Studies using animal models have shown that paternal cocaine use and highly motivated drug-seeking behavior are important determinants of offspring addiction susceptibility. However, the key molecules contributing to offspring addiction susceptibility are currently unclear. The motivation for cocaine-seeking behavior in offspring of male rats was compared between those whose fathers self-administered cocaine (SA) and those who were yoked with them and received non-contingent cocaine administrations (Yoke). We found that paternal experience with cocaine-seeking behavior, but not direct cocaine exposure, could lead to increased lever-pressing behavior in male F1 offspring. This effect was observed without significant changes to the dose-response relationship. The transcriptomes of ventral tegmental area (VTA) in offspring were analyzed under both naive state and after self-administration training. Specific transcriptomic changes in response to paternal cocaine-seeking experiences were found, which mainly affected biological processes such as synaptic connections and receptor signaling pathways. Through joint analysis of these candidate genes and parental drug-seeking motivation scores, we found that gamma-aminobutyric acid receptor subunit gamma-3 (Gabrg3) was in the hub position of the drug-seeking motivation-related module network and highly correlated with parental drug-seeking motivation scores. The downregulation of Gabrg3 expression, caused by paternal motivational cocaine-seeking, mainly occurred in GABAergic neurons in the VTA. Furthermore, down-regulating GABAergic Gabrg3 in VTA resulted in an increase in cocaine-seeking behavior in the Yoke F1 group. This down-regulation also reduced transcriptome differences between the Yoke and SA groups, affecting processes related to synaptic formation and neurotransmitter transmission. Taken together, we propose that paternal cocaine-seeking behavior, rather than direct drug exposure, significantly influences offspring addiction susceptibility through the downregulation of Gabrg3 in GABAergic neurons of the VTA, highlighting the importance of understanding specific molecular pathways in the intergenerational inheritance of addiction vulnerability.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Masculino , Animais , Humanos , Área Tegmentar Ventral , Motivação , Cocaína/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Pai , Autoadministração/métodos , Comportamento de Procura de Droga/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
4.
Nat Commun ; 14(1): 8481, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123574

RESUMO

The risk of developing drug addiction is strongly influenced by the epigenetic landscape and chromatin remodeling. While histone modifications such as methylation and acetylation have been studied in the ventral tegmental area and nucleus accumbens (NAc), the role of H2A monoubiquitination remains unknown. Our investigations, initially focused on the scaffold protein melanoma-associated antigen D1 (Maged1), reveal that H2A monoubiquitination in the paraventricular thalamus (PVT) significantly contributes to cocaine-adaptive behaviors and transcriptional repression induced by cocaine. Chronic cocaine use increases H2A monoubiquitination, regulated by Maged1 and its partner USP7. Accordingly, Maged1 specific inactivation in thalamic Vglut2 neurons, or USP7 inhibition, blocks cocaine-evoked H2A monoubiquitination and cocaine locomotor sensitization. Additionally, genetic variations in MAGED1 and USP7 are linked to altered susceptibility to cocaine addiction and cocaine-associated symptoms in humans. These findings unveil an epigenetic modification in a non-canonical reward pathway of the brain and a potent marker of epigenetic risk factors for drug addiction in humans.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Peptidase 7 Específica de Ubiquitina/metabolismo , Cocaína/farmacologia , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Substâncias/genética , Epigênese Genética , Núcleo Accumbens/metabolismo , Tálamo/metabolismo
5.
Neurosci Lett ; 816: 137506, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778686

RESUMO

Substance use disorders have been associated with alterations in the oxytocinergic system, but few studies have investigated both the peptide and epigenetic mechanisms potentially implicated in the regulation of oxytocin receptor. In this study, we compared plasma oxytocin and blood DNA methylation in the OXTR gene between people with and without cocaine use disorder (CUD). We measured the oxytocin levels of 51 people with CUD during acute abstinence and of 30 healthy controls using an enzyme immunoassay. The levels of DNA methylation in four CpG sites at exon III of the OXTR gene were evaluated in a subsample using pyrosequencing. The Addiction Severity Index was used to assess clinical characteristics. We found higher oxytocin levels in men with CUD (56.5 pg/mL; 95% CI: 48.2-64.7) than in control men (33.6 pg/mL; 95% CI: 20.7-46.5), while no differences between women with and without CUD were detected. With a moderate effect size, the interaction effect between group and sex remained significant when controlling for height, weight and age data. A positive correlation in the CUD sample was found between oxytocin levels and days of psychological suffering prior to treatment enrollment. No group differences were observed regarding DNA methylation data. This suggests that CUD is associated with higher peripheral oxytocin levels in men during acute abstinence. This finding may be considered in future studies that aim at using exogenous oxytocin as a potential treatment for cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ocitocina , Receptores de Ocitocina , Feminino , Humanos , Masculino , Metilação de DNA , Epigênese Genética , Ocitocina/sangue , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Transtornos Relacionados ao Uso de Cocaína/sangue , Transtornos Relacionados ao Uso de Cocaína/genética
7.
Am J Addict ; 32(5): 506-509, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37337750

RESUMO

BACKGROUND AND OBJECTIVES: This study examined how a promoter variant of TH (rs10770141) affects subjective effects of cocaine in 65 nontreatment-seeking individuals with cocaine dependence. METHODS: Participants received cocaine/saline intravenously, and TH genotypes were evaluated. RESULTS: Homozygous individuals for the minor T allele reported greater "good" and "bad" subjective effects to cocaine than those with the major C allele. DISCUSSION AND CONCLUSIONS: TH rs10770141 modulates subjective effects of cocaine in participants with cocaine dependence. SCIENTIFIC SIGNIFICANCE: These results are among the first to indicate that homozygosity of the T allele of rs10770141 modulates greater sensitivity to cocaine.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Humanos , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Genótipo , Alelos , Regiões Promotoras Genéticas
8.
Neurosci Biobehav Rev ; 152: 105270, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271299

RESUMO

Recent lifestyle changes have resulted in tremendous peer pressure and mental stress, and increased the incidences of chronic psychological disorders; like addiction, depression and anxiety (ADA). In this context, the stress-tolerance levels vary amongst individuals and genetic factors play prominent roles. Vulnerable individuals may often be drawn towards drug-addiction to combat stress. This systematic review critically appraises the relationship of various genetic factors linked with the incidences of ADA development. For coherence, we focused solely on cocaine as a substance of abuse in this study. Online scholarly databases were used to screen pertinent literature using apt keywords; and the final retrieval included 42 primary-research articles. The major conclusion drawn from this systematic analysis states that there are 51 genes linked with the development of ADA; and 3 (BDNF, PERIOD2 and SLC6A4) of them are common to all the three aspects of ADA. Further, inter-connectivity analyses of the 51 genes further endorsed the central presence of BDNF and SLC6A4 genes in the development of ADA disorders. The conclusions derived from this systematic study pave the way for future studies for the identification of diagnostic biomarkers and drug targets; and for the development of novel and effective therapeutic regimens against ADA.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Humanos , Transtornos Relacionados ao Uso de Cocaína/genética , Depressão/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Ansiedade/genética , Transtornos de Ansiedade , Proteínas da Membrana Plasmática de Transporte de Serotonina
9.
Biomolecules ; 13(5)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238631

RESUMO

Cocaine addiction is a serious condition with potentially lethal complications and no current pharmacological approaches towards treatment. Perturbations of the mesolimbic dopamine system are crucial to the establishment of cocaine-induced conditioned place preference and reward. As a potent neurotrophic factor modulating the function of dopamine neurons, glial cell line-derived neurotrophic factor (GDNF) acting through its receptor RET on dopamine neurons may provide a novel therapeutic avenue towards psychostimulant addiction. However, current knowledge on endogenous GDNF and RET function after the onset of addiction is scarce. Here, we utilized a conditional knockout approach to reduce the expression of the GDNF receptor tyrosine kinase RET from dopamine neurons in the ventral tegmental area (VTA) after the onset of cocaine-induced conditioned place preference. Similarly, after establishing cocaine-induced conditioned place preference, we studied the effect of conditionally reducing GDNF in the ventral striatum nucleus accumbens (NAc), the target of mesolimbic dopaminergic innervation. We find that the reduction of RET within the VTA hastens cocaine-induced conditioned place preference extinction and reduces reinstatement, while the reduction of GDNF within the NAc does the opposite: prolongs cocaine-induced conditioned place preference and increases preference during reinstatement. In addition, the brain-derived neurotrophic factor (BDNF) was increased and key dopamine-related genes were reduced in the GDNF cKO mutant animals after cocaine administration. Thus, RET antagonism in the VTA coupled with intact or enhanced accumbal GDNF function may provide a new approach towards cocaine addiction treatment.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Dopamina/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Núcleo Accumbens/metabolismo
10.
Psychopharmacology (Berl) ; 240(7): 1531-1546, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37233814

RESUMO

BACKGROUND: Individuals with schizophrenia have high rates of comorbid substance use problems. One potential explanation for this comorbidity is similar neuropathophysiology in substance use and schizophrenia, which may arise from shared genetic risk factors between the two disorders. Here we investigated if genetic risk for schizophrenia could affect drug reward and reinforcement for cocaine in an established mouse model of genetic risk for schizophrenia, the neuregulin 1 transmembrane domain heterozygous (Nrg1 TM HET) mouse. METHODS: We examined drug-induced locomotor sensitization and conditioned place preference for several cocaine doses (5, 10, 20, 30 mg/kg) in male adult Nrg1 TM HET and wild-type-like (WT) littermates. We also investigated intravenous self-administration of and motivation for cocaine (doses 0.1, 0.5, 1 mg/kg/infusion), as well as extinction and cue-induced reinstatement of cocaine. In a follow-up experiment, we examined self-administration, extinction and cue-induced reinstatement of a natural reward, oral sucrose. RESULTS: Cocaine preference was similar between Nrg1 TM HET mice and WT littermates at all doses tested. Locomotor sensitization to cocaine was not affected by Nrg1 genotype at any dose. Although self-administration and motivation for cocaine was unaffected, extinction of cocaine self-administration was impaired in Nrg1 TM HET compared to WT controls, and cue-induced reinstatement was greater in Nrg1 mutants in the middle of the reinstatement session. Sucrose self-administration and extinction thereof was not affected by genotype, but inactive lever responding was elevated during cue-induced reinstatement for operant sucrose in Nrg1 TM HET mice compared to WTs. DISCUSSION: These results suggest impaired response inhibition for cocaine in Nrg1 TM HET mice and suggests Nrg1 mutation may contribute to behaviours which can limit control over cocaine use.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Esquizofrenia , Camundongos , Masculino , Animais , Cocaína/farmacologia , Esquizofrenia/genética , Reforço Psicológico , Transtornos Relacionados ao Uso de Cocaína/genética , Sacarose , Extinção Psicológica/fisiologia , Autoadministração , Condicionamento Operante/fisiologia , Sinais (Psicologia)
11.
Transl Psychiatry ; 13(1): 51, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774338

RESUMO

Not everyone who uses drugs loses control over their intake, which is a hallmark of addiction. Although familial risk studies suggest significant addiction heritability, the genetic basis of vulnerability to drug addiction remains largely unknown. In the present study, we investigate the relationship between self-control, cocaine use, and the rs36024 single nucleotide polymorphism of the noradrenaline transporter gene (SLC6A2). We hypothesize that C-allele-carrying adults show impaired self-control, as measured by the stop-signal task and demonstrated previously in adolescents, and further exacerbated by chronic cocaine use. Patients with cocaine use disorder (CUD, n = 79) and healthy unrelated participants with no history of drug abuse (n = 54) completed the stop-signal task. All participants were genotyped for rs36024 allelic variants (CC/TT homozygotes, CT heterozygotes). We measured mean stop-signal reaction time, reflecting the ability to inhibit ongoing motor responses, reaction times to go stimuli, and the proportion of successful stops. CUD patients showed prolonged stop-signal reaction time, however, there was no main effect of rs36024 genotype. Importantly, there was a significant genotype-by-diagnosis interaction such that CUD patients with CC genotype had longer stop-signal reaction time and fewer successful stops compared with CC healthy controls and TT CUD patients. CT CUD patients showed an intermediate performance. Self-control deficits were associated with cocaine use disorder diagnosis, which interacts with the noradrenaline transporter rs36024 polymorphism. Our findings suggest that rs36024 may represent a potential genetic vulnerability marker, which facilitates the transition from first cocaine use to addiction by weakening the inhibitory control over behavior.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Adulto , Humanos , Transtornos Relacionados ao Uso de Cocaína/genética , Genótipo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Polimorfismo de Nucleotídeo Único
12.
Sci Adv ; 9(6): eadd8946, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763659

RESUMO

Cocaine use disorder (CUD) is an intractable syndrome, and rising overdose death rates represent a substantial public health crisis that exacts tremendous personal and financial costs on patients and society. Sharp increases in cocaine use drive the urgent need for better mechanistic insight into this chronic relapsing brain disorder that currently lacks effective treatment options. To investigate the transcriptomic changes involved, we conducted RNA sequencing on two striatal brain regions that are heavily implicated in CUD, the nucleus accumbens and caudate nucleus, from men suffering from CUD and matched controls. Weighted gene coexpression analyses identified CUD-specific gene networks enriched in ionotropic receptors and linked to lowered neuroinflammation, contrasting the proinflammatory responses found in opioid use disorder. Integration of comprehensive transcriptomic datasets from mouse cocaine self-administration models revealed evolutionarily conserved gene networks in CUD that implicate especially D1 medium spiny neurons as drivers of cocaine-induced plasticity.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Masculino , Humanos , Camundongos , Animais , Cocaína/farmacologia , Redes Reguladoras de Genes , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transtornos Relacionados ao Uso de Cocaína/genética , Encéfalo/metabolismo
13.
Biol Psychiatry ; 93(6): 502-511, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36253194

RESUMO

BACKGROUND: Over the course of chronic drug use, brain transcriptional neuroadaptation is thought to contribute to a change in drug use behavior over time. The function of the transcription factor CREB (cAMP response element binding protein) within the nucleus accumbens (NAc) has been well documented in opposing the rewarding properties of many classes of drugs, yet the gene targets through which CREB causally manifests these lasting neuroadaptations remain unknown. Here, we identify zinc finger protein 189 (Zfp189) as a CREB target gene that is transcriptionally responsive to acute and chronic cocaine use within the NAc of mice. METHODS: To investigate the role of the CREB-Zfp189 interaction in cocaine use, we virally delivered modified clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9 constructs capable of selectively localizing CREB to the Zfp189 gene promoter in the NAc of mice. RESULTS: We observed that CREB binding to the Zfp189 promoter increased Zfp189 expression and diminished the reinforcing responses to cocaine. Furthermore, we showed that NAc Zfp189 expression increased within D1 medium spiny neurons in response to acute cocaine but increased in both D1- and D2-expressing medium spiny neurons in response to chronic cocaine. CREB-mediated induction of Zfp189 potentiated electrophysiological activity of D1- and D2-expressing medium spiny neurons, recapitulating the known effect of CREB on these neurons. Finally, targeting CREB to the Zfp189 promoter within NAc Drd2-expressing neurons, but not Drd1-expressing neurons, was sufficient to diminish cocaine-conditioned behaviors. CONCLUSIONS: Together, these findings point to the CREB-Zfp189 interaction within the NAc Drd2+ neurons as a molecular signature of chronic cocaine use that is causal in counteracting the reinforcing effects of cocaine.


Assuntos
Adaptação Fisiológica , Transtornos Relacionados ao Uso de Cocaína , Cocaína , Neurônios Espinhosos Médios , Regiões Promotoras Genéticas , Fatores de Transcrição , Animais , Camundongos , Adaptação Fisiológica/genética , Cocaína/farmacologia , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/genética , Neurônios Espinhosos Médios/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleo Accumbens , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166569, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243293

RESUMO

BACKGROUND: Hippocampus plays critical roles in drug addiction. Cocaine-induced modifications in dopamine receptor function and the downstream signaling are important regulation mechanisms in cocaine addiction. Rac regulates actin filament accumulation while Cdc42 stimulates the formation of filopodia and neurite outgrowth. Based on the region specific roles of small GTPases in brain, we focused on the hippocampal subregions to detect the regulation of Cdc42 signaling in long-term morphological and behavioral adaptations to cocaine. METHODS: Genetically modified mouse models of Cdc42, dopamine receptor D1 (D1R) and D2 (D2R) and expressed Cdc42 point mutants that are defective in binding to and activation of its downstream effector molecules PAK and N-WASP were generated, respectively, in CA1 or dentate gyrus (DG) subregion. RESULTS: Cocaine induced upregulation of Cdc42 signaling activity. Cdc42 knockout or mutants blocked cocaine-induced increase in spine plasticity in hippocampal CA1 pyramidal neurons, leading to a decreased conditional place preference (CPP)-associated memories and spatial learning and memory in water maze. Cdc42 knockout or mutants promoted cocaine-induced loss of neurogenesis in DG, leading to a decreased CPP-associated memories and spatial learning and memory in water maze. Furthermore, by using D1R knockout, D2R knockout, and D2R/Cdc42 double knockout mice, we found that D2R, but not D1R, regulated Cdc42 signaling in cocaine-induced neural plasticity and behavioral changes. CONCLUSIONS: Cdc42 acts downstream of D2R in the hippocampus and plays an important role in cocaine-induced neural plasticity through N-WASP and PAK-LIMK-Cofilin, and Cdc42 signaling pathway correlatively links specific brain regions (CA1, dentate gyrus) to cocaine-induced CPP behavior.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Camundongos , Cocaína/farmacologia , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Dopamina/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
15.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499749

RESUMO

Cocaine is a powerful psychostimulant that is one of the most widely used illicit addictive. The dopamine transporter (DAT) plays a major role in mediating cocaine's reward effect. Decreases in DAT expression increase rates of drug abuse and vulnerability to comorbid psychiatric disorders. We used the novel DAT transgenic rat model to study the effects of cocaine on locomotor behaviors in adolescent rats, with an emphasis on sex. Female rats showed higher response rates to cocaine at lower acute and chronic doses, highlighting a higher vulnerability and perceived gender effects. In contrast, locomotor responses to an acute high dose of cocaine were more marked and sustained in male DAT heterozygous (HET) adolescents. The results demonstrate the augmented effects of chronic cocaine in HET DAT adolescent female rats. Knockout (KO) DAT led to a level of hyperdopaminergia which caused a marked basal hyperactivity that was unchanged, consistent with a possible ceiling effect. We suggest a role of alpha synuclein (α-syn) and PICK 1 protein expressions to the increased vulnerability in female rats. These proteins showed a lower expression in female HET and KO rats. This study highlights gender differences associated with mutations which affect DAT expression and can increase susceptibility to cocaine abuse in adolescence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Animais , Masculino , Feminino , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Cocaína/farmacologia , Locomoção/genética , Transtornos Relacionados ao Uso de Cocaína/genética , Ratos Transgênicos , Inibidores da Captação de Dopamina/farmacologia
16.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430488

RESUMO

Recent years have provided more and more evidence confirming the important role of Wnt/ß-catenin signaling in the pathophysiology of mental illnesses, including cocaine use disorder. High relapse rates, which is a hallmark of drug addiction, prompt the study of changes in Wnt signaling elements (Wnt5a, Wnt7b, and Ctnnb1) in the motivational aspects of cocaine use and early drug-free period (3 days after the last exposure to cocaine). For this purpose, an animal model of intravenous cocaine self-administration and two types of drug-free period (extinction training and abstinence in the home cage) were used. The studies showed that chronic cocaine self-administration mainly disturbs the expression of Wnt5a and Ctnnb1 (the gene encoding ß-catenin) in the examined brain structures (striatum and hippocampus), and the examined types of early abstinence are characterized by a different pattern of changes in the expression of these genes. At the same time, in cocaine self-administrated animals, there were no changes in the level of Wnt5a and ß-catenin proteins at the tested time points. Moreover, exposure to cocaine induces a significant reduction in the striatal and hippocampal expression of miR-374 and miR-544, which can regulate Wnt5a levels post-transcriptionally. In summary, previous observations from experimenter-administered cocaine have not been fully validated in the cocaine self-administration model. Yoked cocaine administration appears to disrupt Wnt signaling more than cocaine self-administration. The condition of the cocaine-free period, the routes of drug administration, and the motivational aspect of drug administration play an important role in the type of drug-induced molecular changes observed. Furthermore, in-depth research involving additional brain regions is needed to determine the exact role of Wnt signaling in short-term and long-lasting plasticity as well as in the motivational aspects of cocaine use, and thus to assess its potential as a target for new drug therapy for cocaine use disorder.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , MicroRNAs , Animais , Ratos , Masculino , Cocaína/farmacologia , beta Catenina/genética , beta Catenina/metabolismo , Preparações Farmacêuticas , Via de Sinalização Wnt , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Hipocampo/metabolismo
17.
Sci Adv ; 8(32): eabn3552, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960793

RESUMO

The striatum plays a critical role in regulating addiction-related behaviors. The conventional dichotomy model suggests that striatal D1/D2 medium spiny neurons (MSNs) positively/negatively regulate addiction-related behaviors. However, this model does not account for the neuronal heterogeneity and functional diversity of the striatum, and whether MSN subtypes beyond the pan-D1/D2 populations play distinct roles in drug addiction remains unknown. We characterized the role of a tachykinin 2-expressing D1 MSN subtype (Tac2+), present in both rodent and primate striatum, using cocaine addiction mouse models. We found that acute cocaine administration reduces Tac2 neuronal activity, and cocaine conditioning alters neuronal response related to cocaine reward contextual associations. In addition, activation/inhibition of Tac2+ neurons attenuates/promotes cocaine-induced conditioned place preference and cocaine intravenous self-administration. Furthermore, stimulation of the NAc-to-lateral hypothalamic projection of Tac2+ neurons suppresses cocaine reward behavior. Our study reveals an unconventional negative regulatory function of D1 MSNs in drug addiction that operates in a subtype- and projection-specific manner.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
18.
Transl Psychiatry ; 12(1): 187, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523779

RESUMO

Cocaine use disorder (CUD) patients display heterogenous symptoms and unforeseeable responses to available treatment approaches, highlighting the need to identify objective, accessible biobehavioral signatures to predict clinical trial success in this population. In the present experiments, we employed a task-based behavioral and pharmacogenetic-fMRI approach to address this gap. Craving, an intense desire to take cocaine, can be evoked by exposure to cocaine-associated stimuli which can trigger relapse during attempted recovery. Attentional bias towards cocaine-associated words is linked to enhanced effective connectivity (EC) from the anterior cingulate cortex (ACC) to hippocampus in CUD participants, an observation which was replicated in a new cohort of participants in the present studies. Serotonin regulates attentional bias to cocaine and the serotonergic antagonist mirtazapine decreased activated EC associated with attentional bias, with greater effectiveness in those CUD participants carrying the wild-type 5-HT2CR gene relative to a 5-HT2CR single nucleotide polymorphism (rs6318). These data suggest that the wild-type 5-HT2CR is necessary for the efficacy of mirtazapine to decrease activated EC in CUD participants and that mirtazapine may serve as an abstinence enhancer to mitigate brain substrates of craving in response to cocaine-associated stimuli in participants with this pharmacogenetic descriptor. These results are distinctive in outlining a richer "fingerprint" of the complex neurocircuitry, behavior and pharmacogenetics profile of CUD participants which may provide insight into success of future medications development projects.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Transtornos Relacionados ao Uso de Substâncias , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/genética , Giro do Cíngulo , Humanos , Mirtazapina , Serotonina
19.
Sci Rep ; 12(1): 6734, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35469040

RESUMO

Repeated cocaine use poses many serious health risks to users. One of the risks is hypoxia and ischemia (HI). To restore the biological system against HI, complex biological mechanisms operate at the gene level. Despite the complexity of biological mechanisms, there are common denominator genes that play pivotal roles in various defense systems. Among these genes, the cAMP response element-binding (Creb) protein contributes not only to various aspects of drug-seeking behavior and drug reward, but also to protective mechanisms. However, it is still unclear which Creb members are key players in the protection of cocaine-induced HI conditions. Herein, using one of the state-of-the-art deep learning methods, the generative adversarial network, we revealed that the OASIS family, one of the Creb family, is a key player in various defense mechanisms such as angiogenesis and unfolded protein response against the HI state by unveiling hidden mRNA expression profiles. Furthermore, we identified mysterious kinases in the OASIS family and are able to explain why the prefrontal cortex and hippocampus are vulnerable to HI at the genetic level.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Cocaína/efeitos adversos , Transtornos Relacionados ao Uso de Cocaína/complicações , Transtornos Relacionados ao Uso de Cocaína/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Hipóxia , Isquemia
20.
Drug Alcohol Depend ; 232: 109270, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124387

RESUMO

Cocaine-induced transient hallucinations (CIH) are a frequent complication following cocaine intake that is associated with addiction severity. METHODS: Two hundred and forty-two non-psychotic and Caucasian lifetime cocaine users were included in a French multicentric study. Clinical variables and dopamine pathway genotype data were extracted and tested with CIH scores using a zero-inflated binomial model, which allows for the exploration of factors associated with occurrence and severity separately. RESULTS: Cocaine dependence (poccurrence= 6.18 × 10-5, pseverity= 9.25 × 10-8), number of cocaine dependence DSM IV-Tr criteria (poccurrence= 1.22 × 10-7, pseverity= 5.09 × 10-6), and frequency of intake during the worst period of misuse (poccurrence= 8.51 × 10-04, pseverity= 0.04) were associated with greater occurrence and higher severity of CIH. The genetic associations did not yield significant results after correction for multiple tests. However, some nominal associations of SNPs mapped to the VMAT2, DBH, DRD1, and DRD2 genes were significant. In the multivariate model, the significant variables were the number of cocaine dependence criteria, lifetime alcohol dependence, and the nominally associated SNPs. CONCLUSION: Our study shows that CIH occurrence and severity are two distinct phenotypes, with shared clinical risk factors; however, they likely do not share the same genetic background.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Transtornos Relacionados ao Uso de Cocaína/complicações , Transtornos Relacionados ao Uso de Cocaína/epidemiologia , Transtornos Relacionados ao Uso de Cocaína/genética , Alucinações/induzido quimicamente , Alucinações/epidemiologia , Alucinações/genética , Humanos , Fenótipo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...